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Abstract 

The mental representation of numbers in long-term memory was compared in university 

students diagnosed with developmental dyscalculia with minimal comorbidity and 

healthy control participants. The participants were selected based on their performance 

in MATAL - a standard computer-based test battery for the diagnosis of learning 

disabilities in students in tertiary education in Israel. All participants performed a 

numerical size comparison task and a physical size comparison task of numbers 

differing in their physical and numerical size. Both groups showed normal intentional 

processing of numerical magnitude as marked by regular distance and size effects. 

Furthermore, both groups did not differ in automatic processing of numerical size as 

indicated by the normal and equally increasing (with intra-pair distance) size congruity 

effect and the equal space-number association of response codes effect. The 

implications of these findings for understanding the source of dyscalculia are discussed.  

 

Keywords: developmental dyscalculia, mental number line, automatic processing, 

distance effect, size effect, end effect, SNARC effect 
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Introduction 

Six to eleven percent of the population present significant difficulties in learning 

mathematics (von Aster & Shalev, 2007), referred to as developmental dyscalculia 

(DD).  DD is reflected in several different numerical functions such as spontaneous 

focusing on numbers (Hannula, Lepola, & Lehtinen, 2010), comparing non-symbolic 

numerical quantities (e.g., dot arrays; Piazza et al., 2010), processing numbers 

symbolically (e.g., in Arabic notation; Stock, Desoete, & Roeyers, 2010), or linking 

non-symbolic representations to symbols such as Arabic numerals (Bugden & Ansari, 

2011; Rubinsten & Henik, 2005; for review see Kaufmann et al., 2013).  

Children with DD are far behind their classmates in a wide range of numerical tasks; 

they have difficulties in retrieval of arithmetical facts (Geary, 1993), using arithmetical 

procedures (Russell & Ginsburg, 1984; Shalev & Gross-Tsur, 2001), and they use 

immature problem solving strategies (e.g., using finger counting; Jordan, Hanich, & 

Kaplan, 2003). Mathematical difficulties have been shown to be more damaging to 

career prospects than reading deficiencies (Parsons & Bynner, 2005). Beddington et al. 

(2008; see also Butterworth, Varma, & Laurillard, 2011; Goswami, 2008) argued that 

untreated learning difficulties can lead to immense costs for society. Our study draws 

from our general interest in the mental representation of numbers. We assume that 

representations stored in long-term memory, which are relatively not affected by 

intentional strategies, store the "primitives" of a given cognitive system (see Tzelgov, 

Ganor-Stern, Kallai, & Pinhas, in press). Numerical primitives are the building blocks 

for generating more complex numerical entities such as multi-digit and negative 

numbers, or fractions (when required to do so). The purpose of this study is to assess 

and compare the representation and processing of numerical primitives in young adults 

with and without developmental dyscalculia. 

The metaphor frequently used to describe the mental representation of numbers is the 

mental number line (MNL). It assumes that numbers, being symbolic representations 

of magnitude, are mapped onto a line. Consistent with this metaphor is the distance 

effect, first reported by Moyer and Landauer (1967), which refers to the negative 

correlation between the response time (RT) of the comparison of two numbers and the 

numerical distance between them. Restle (1970) reported that the size effect reflects 

Weber’s law, according to which, given a constant distance between two numbers, their 
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numerical comparison time increases with their (mean) numerical magnitude. This in 

turn is consistent with a compressive mapping function of numbers onto the MNL. 

The notion of the MNL is used both to describe the semantic representation of numbers 

in long-term memory and representations emerging in working memory in accordance 

with specific task requirements. As already mentioned, we are interested in the 

representations in LTM—the mental units stored in long-term memory and used to 

generate additional representational units that can be viewed as mental primitives. Such 

primitives can be accessed by automatic processing (Kallai & Tzelgov, 2009; Tzelgov et 

al., in press). Tasks that require deliberate processing (e.g., intentional comparisons of 

numerical size) reflect not just internal features of the mental representations but also 

the strategies applied on them in order to perform the task optimally ((Tzelgov & 

Ganor-Stern, 2005). In contrast, automatic processing that occurs without conscious 

monitoring allows access to the MNL in semantic memory (Bargh 1989, 1992; Tzelgov, 

1997). Notice that consistent with memory retrieval theories of automaticity (Logan, 

1988; Perruchet & Vinter, 2002), we are assuming that automatic processing does not 

require (at least not intentional) additional processing of whatever was retrieved from 

memory.  

Two markers of automatic processing of numerical size are frequently used. The first 

marker is the size congruity effect (SiCE). The SiCE is obtained when participants 

perform physical size comparisons on stimuli varying also in their numerical size. 

Notice that physical size comparisons refer to the size of the numerals that represent 

numerical magnitude. The processing of these numerical magnitudes is automatic in the 

sense of not being part of the task requirements. The SiCE refers to the increased 

latency in the incongruent condition (e.g., 3 5) as compared to the congruent (e.g., 3 5) 

one (Henik & Tzelgov, 1982). The SiCE was observed in many studies when single-

digit (1D) numbers were used as stimuli, thereby validating the claim that 1D numbers 

are primitives. Furthermore, consistent with the metaphor of the mental number line, the 

SiCE increases with the intra-pair distance along the irrelevant numerical dimension 

(Cohen-Kadosh & Henik, 2006; Schwarz & Ischebeck, 2003; Tzelgov J., Yehene, 

Kotler, & Alon, 2000). Consistent with the assumption of the compressed representation 

along the MNL, the SiCE is smaller for pairs of larger numbers (Pinhas, Tzelgov, & 

Guata-Yaakobi, 2010). 
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Two processes are apparently involved when adults compare magnitudes. One is an 

analog comparison process, which produces the distance effect (Moyer & Landauer, 

1967). The other is the activation of end stimuli (i.e., objects representing the smallest 

and the largest magnitudes in the set), which results in the end effect—faster processing 

of pairs including the end stimuli of a set (Banks, 1977).  Leth-Steensen and Marley 

(2000) proposed a formal model that shows how the two processes result in an 

arrangement of the mental representation of objects in order of their magnitudes. Pinhas 

and Tzelgov (2012) proposed that the two-process model of Leth-Steensen and Marley 

also applies to automatic processing of numbers. They attributed the monotonous 

increase of the SiCE with the intra-pair numerical distance (e.g., Henik & Tzelgov, 

1982; Tzelgov et al., 2000) to an analog comparison process that is dominated by the 

distance effect. In addition, the faster processing of pairs containing end stimuli was 

suggested to enlarge the SiCE due to earlier availability of numerical magnitude 

information (Schwarz & Ischebeck, 2003), and to attenuate the modulation of the SiCE 

by the intra-pair distance. This phenomenon was coined the automatic end effect (AEE) 

by Pinhas and Tzelgov and was shown to exist for 0, and for 1 in its absence, but not for 

larger numbers; that is, the AAE was absent when 2 was the smallest number in the set. 

This finding is important by showing the special status of 1 (and zero) as the 

semantically smallest numbers stored in long-term memory (Tzelgov et al., in press). It 

is also consistent with the special status of 1 as hypothesized by Leslie, Gelman, and 

Gallistel (2008). Recently Goldman, Tzelgov, Ben-Shalom, and Berger (2013) provided 

further support for the claim that both the analog comparison process and the AEE are 

involved in automatic comparison of numbers by showing that the emergence of the 

AEE developmentally precedes the automatization of the end effect. 

An additional marker of automatic processing in the numerical domain is the spatial 

numerical association of response codes (henceforth, SNARC) effect (Dehaene, Bossini, 

& Giraux, 1993). The parity task has become the most frequent task that has been used 

to investigate the SNARC effect (Wood, Nuerk, Willmes, & Fischer, 2008). Usually in 

the parity task, participants are asked to indicate the parity status of numbers with 

bimanual responses. The effect is indicated by a negative correlation between the 

difference of the right-hand key and left-hand key response latencies when responding 

to a given number, and the magnitude of that number. Such a correlation is consistent 

with the assumption that the MNL spreads from left to right. Up until a while ago there 
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were no reports of SNARC effects in Hebrew readers. Recently Zohar-Shai, Tzelgov, 

Karni, and Rubinsten  (in press) showed not only that the effect exists in Hebrew 

readers but also that its direction is identical to the one obtained in readers of languages 

written from left to right (e.g., English), that is, the MNL spreads from left to right. 

In the present study we compared the mental representation of numbers in long-term 

memory (LTM) of university students diagnosed with DD and healthy control 

participants. Our study draws from our general interest in the mental representation of 

numbers. Many studies have been directed at higher-level, school-like concepts and 

have focused on general cognitive functions such as problems in working memory 

(Geary, 1993) or deficits in attention systems (Shalev, Auerbach, & Gross-Tsur, 1995). 

Others emphasized low-level deficits and very basic deficiencies in processing 

magnitude information that may underlie DD (Ansari & Karmiloff-Smith, 2002). Such 

an approach leads to focusing on the building blocks of numerical cognition in order to 

characterize the performance of young adults suffering from DD. 

Here, we report the results of three experiments. All three involved the processing of 

single-digit natural numbers (i.e., the numbers 1-9) that were shown to be numerical 

primitives (for a detailed discussion of this issue see Tzelgov et al., in press). In two of 

the experiments, we used the SiCE as a marker of automatic processing and in the third 

we used the SNARC effect. All experiments addressed the following question; to what 

extent does the automatic processing of numerical primitives by participants with 

dyscalculia differ from that of participants without dyscalculia? Experiment 1 focused 

on the modulation of the SiCE by intra-pair numerical distance and by the numerical 

size of the pairs physically compared. 



7 

 

Participant Sample Selection 

Participants 

A special effort was devoted to finding a sample that would allow testing the hypothesis 

of interest. Twenty-nine young adults participated in the study; 13 of them, who were 

previously diagnosed with dyscalculia, composed the clinical sample while the 

remaining 16 composed the control sample. Table 1 presents the characteristics of the 

clinical and control samples. 

Selection Procedure 

All participants but one were selected from the database of the Learning Disabilities 

Diagnostic Center at Achva Academic College. To increase the clinical sample, an 

additional participant was selected from the database of Orly Rubinsten’s laboratory for 

learning disabilities at Haifa University. Both centers use MATAL (Ben-Simon & 

Inbar-Weiss, 2012) - a computer-based test battery for the diagnosis of learning 

disabilities (LD) in students in tertiary education. MATAL was developed by the 

national institute of testing and evaluation (henceforth, NITE)  in cooperation with the 

Council of Higher Education in Israel (CHE) as part of an endeavor to develop a policy 

and procedure for standardizing and regulating the diagnosis of LD in higher education 

and thus facilitate the provision of test accommodations. MATAL assessment tools 

include 20 tests that assess the following skills: reading, writing, numeracy, attention, 

memory and visual perception. Of the 20 tests, three tests (seven performance measures) 

are used to diagnose numeracy functions: Computational Automaticity (retrieval of 

simple arithmetic facts), Procedural Knowledge (mastery of basic arithmetic 

procedures) and Number Sense (number-line representation). All MATAL tests were 

validated and normed (Ben-Simon & Inbar-Weiss, 2012). 

A further selection of potential participants was carried out based on their performance 

on MATAL reading and attention tests. The inclusion criterion for all the participants 

was a score equal to or higher than the 10
th

 percentile. The inclusion criteria for the 

clinical sample was a performance score lower than the 20
th

 percentile on either one or 

both of the performance measures (RT and accuracy) of the Computational 

Automaticity and Procedural Knowledge tests.  

It is important to note that in the clinical group, only two participants were also 

diagnosed with mild-moderate dyslexia and five of them were diagnosed with 



8 

 

dysgraphia. None of the participants in either the clinical or the control groups had 

attention deficit hyperactivity disorder (ADHD). 

Once the appropriate participants were identified for both the clinical group (N = 13) 

and the control group (N = 16), they were contacted and invited to participate in the 

study. All participants gave written consent to participate in the experiments and were 

rewarded with 50 NIS per hour for their participation. Each participant carried out all 

three experiments. 
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Experiment 1:  Modulation of the SiCE by Numerical Size 

and Numerical Distance 

This experiment focused on the distance effect and the size effect with the goal of 

testing to what extent controls differed from DD participants in their representation of 

the MNL. We used the SiCE as a marker of automaticity because it allowed probing the 

representation of the numbers 1-9 as mental primitives. Participants were presented in 

each trial with a pair of numbers differing in their numerical size and physical size, and 

they were required to judge which member of the pair was physically larger. If, as 

already mentioned, numbers are aligned along a mental number line and their numerical 

magnitude is automatically accessed, one should expect the SiCE to increase with the 

intra-pair numerical distance. Furthermore, if the representation along the MNL is 

compressed, one should expect that for a fixed intra-pair numerical distance, the SiCE 

should decrease with the magnitude of the numbers compared (e.g., it should be smaller 

for the pair (2 3) than for the pair (7 8)). From the perspective of the present study, the 

critical question was whether these modulations of the SiCE by the distance and the size 

effect would be further modulated by the difference between DD participants and 

controls.  

Method 

Stimuli and apparatus. The stimulus set was generated from Arabic numerals ranging 

from 1 to 9. There were four numerical distances: distance 1 (digit pairs: 1 2, 3 4, 6 7, 8 

9); distance 2 (digit pair: 1 3, 2 4, 6 8, 7 9); distance 5 (digits pairs: 1 6, 2 7, 3 8, 4 9); 

and distance 6 (digit pairs: 1 7, 2-8, 3-9). Two sets of stimuli were generated—one for 

numerical size comparisons and the other for physical size comparisons. In the 

numerical comparison (NC) task, both digits in each of the pairs appeared in an equal 

physical size. The numbers were written in white Courier New font (size: 25 points) on 

a black background. Given that each pair appeared once with the numerically larger 

number on the left side and once with the numerically smaller number on the left side, 

this created a total of 30 pairs. Each pair appeared 8 times, giving a total of 240 

randomly ordered trials for the NC task.  

In the physical comparison (PC) task, the numerals in each pair appeared in two 

different physical sizes: large (Courier New font, size: 28 points) and small (Courier 

New font, size: 22 points). Each number pair appeared four times—equally in the 
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congruent (e.g., 3 5) and incongruent (e.g., 3 5) condition, once with the physically 

larger number on the left side and once with the physically smaller number on the left 

side—creating a total of 60 trials. Each of these pairs appeared 4 times, giving a total of 

240 randomly ordered trials for the PC task. 

The experiment was conducted on an IBM personal computer with a 17-inch color 

screen monitor and was programmed in E-Prime software (Schneider, Eschman, & 

Zuccolotto, 2002). 

Procedure 

Each participant performed two kinds of comparisons )NC and PC) in separate blocks, 

with the PC block preceding the NC block. In the PC task, participants had to indicate 

which numeral in the pair was physically larger. In the NC task, participants were 

instructed to indicate which number in the pair was numerically larger. Participants 

were given a short rest break between the two tasks as well as after each sequence of 

240 trials. 

The experiment was conducted individually. Participants were seated about 60 cm from 

a computer screen. They were instructed to respond as quickly as possible, to avoid 

errors, to attend only to the relevant dimension, and to indicate which of two stimuli in a 

given display was numerically (numerical comparison) or physically (size comparison) 

larger. They indicated their choices by pressing one of two keys corresponding to the 

side of the display with the selected digit (i.e., "P" key for the right number or the “Q” 

key for the left one). A practice block of 12 trials followed the instructions. The 

experimental trials appeared in random order. Each trial started with a fixation cross that 

appeared at the center of the screen for 500 ms. Then a pair of digits were presented and 

remained in view until the participant pressed a key (but not for more than 3,000 ms). A 

new stimulus appeared 1,500 ms after the participant’s response. Each digit was 7.6 mm 

from the center of the screen. The inter-trial interval was 1,000 ms. There were 6 blocks 

in the physical task and 3 blocks in the numerical task.  

Results and Discussion 

To allow for testing the modulation of the SiCE by intra-pair numerical distance and by 

numerical size, we defined two binary factors. We defined pairs differing in numerical 

size as small when the mean numerical size of a pair was between 1.5 and 4.5 (e.g., for 

the pair (1 2) the size was 1.5; i.e., (1+2)/2) or as large when the mean numerical size of 
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a pair was between 5.5 and 8.5.  Similarly, numerical distance was defined as being 

short (between 1 and 2) or large (between 5 and 6).  This resulted in a 2 (numerical size) 

x 2 (numerical distance) x 2 (congruency) x 2 (group: DD vs. control) factorial design 

with three within-participant factors and group as a between-participant factor. The 

dependent measure was RT. In all analyses the significance level was defined as p < .05. 

A four-way analysis of variance (ANOVA) revealed that overall DD participants 

responded slower than controls did, F (1, 23) = 6.16, MSE = 62,738, 
2

p = .19, and that 

their responses were slower for numerically larger pairs than for numerically smaller 

pairs, 

F (1, 26) = 20.1, MSE = 332, 
2

p = .44. In addition, their responses were faster in the 

congruent condition, F (1, 26) = 82.37, MSE = 1,660, 
2

p = .76, which was further 

moderated by numerical distance, F (1, 26) = 25.9, MSE = 358, 
2

p = .50. While the SiCE 

was significant in both distance conditions, F (1, 26) = 111.37, MSE = 975.5, 
2

p = .81; 

F(1, 26) = 35.84, MSE = 1,042, 
2

p = .58, for large and small distance, respectively, it was 

larger in the large distance condition, as indicated by the corresponding 
2

p  measures 

and as presented in Figure 1. It is also important to emphasize that the relation between 

the SiCE and intra-pair distance was not moderated by group membership, F < 1, 

implying a negligible 
2

p, and in addition, the four-way interaction was not significant, 

F (1, 26) = 1.2, ns, 
2
p = .04.  

These results clearly show that the modulation of the SiCE by intra-pair numerical 

distance was very similar in DD and control participants. 

Congruity was also modulated by numerical size, F (1, 26) = 25.9, MSE = 399, 
2

p = .67. 

The SiCE was significant for both small, F (1, 26) = 88.35, MSE = 1,504, 
2

p = .77, and 

large size pairs, F (1, 26) = 45.23, MSE = 554, 
2
p = .64. It was larger in the small size 

condition as indicated by the relevant partial eta squared measures and as can be seen in 

Figure 2. This was not moderated by group membership as can be seen by the absence 

of both (already reported) a four-way interaction and a triple interaction of group x size 

x congruity, F < 1.  

Thus we may conclude that the decrease of the size congruity effect with the increase of 

numerical size of numbers physically compared, characterizes the performance of DD 

and control participants alike.  
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Experiment 2:  The Automatic End Effect 

Goldman and Tzelgov (2014) replicated the end effect for the number 1 and showed that 

the number 9 does not serve as the upper end of the primitives. Experiment 2 compared 

the end effect and the AEE in DD and control participants.  

Method 

Stimuli. The stimuli were all pairs of numbers that could be generated using two 

different numbers from the set 1–9. In all trials the numbers were presented in Courier 

New font, in white color on a black background, and appeared on both sides (in 

different instances) of the center of the screen. In the physical comparison task, 36 

physically congruent pairs were generated by presenting the number with higher 

numerical value in font size 28 and the number with lower numerical value in font size 

22 (e.g., 2 8). The 36 physically incongruent pairs were created by presenting the 

number with the higher value in font size 22 and the number with the lower value in 

font size 28 (e.g., 2 8). In the numerical comparison task all numbers were presented in 

font size 28. In both tasks, each pair appeared 16 times in a counterbalance design with 

the larger number in half of the trials on the right side and in the other half on the left 

side. 

There was a viewing distance of 57 cm between participants and the computer screen. 

The distance between the centers of the numbers was 5.5°. Numbers that appeared in 

font size 28 were 1.6° high and 1° wide. Numbers that appeared in font size 22 were 

1.2° high and 0.8° wide. 

Procedure  

Participants performed the physical comparison task first followed by the numerical 

comparison task. In the physical comparison task, pairs of numbers varying in physical 

and numerical size were presented and participants were instructed to indicate which 

number was physically larger. In the numerical comparison task, pairs of numbers were 

of fixed physical size and participants were instructed to indicate which number had a 

larger numerical value. In both tasks, participants were instructed to press the L key if 

the chosen number was on the right and the A key if it was on the left. They were 

instructed to respond as quickly as possible while avoiding errors. Each task started with 

eight practice trials. The experimental trials appeared in random order. An experimenter 

was present during instructions and practice, making sure the task was understood. The 
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pairs remained on the screen until the participant responded. Incorrect responses were 

followed by an error sound. 

Results and Discussion   

Analysis of response latencies was carried out for correct responses only (error rates 

were lower than 0.03). Extreme RT values (below 200 ms or above 1,000 ms) were 

excluded from the analysis (less than 0.04 of all trials). In all analyses the significance 

level was defined as p < .05. 

Numerical task. Mean RTs of correct responses were first submitted to a two-way 

ANOVA with group (control vs. DD) as a between-participants variable and pair type 

(pairs containing 1, pairs containing 9, pair containing both 1 and 9, pairs containing 

neither 1 nor 9) as a within-participant variable. A main group effect was found, F (1, 26) 

= 19.67, MSE = 13,445, 
2

p = .43, indicating that comparisons performed by the control 

group were faster (459 ms) than those by the DD group (557 ms). A main effect of pair 

type was also found, F (3, 78) = 161.72, MSE = 220, 
2

p = .86 (see Figure 3).  

The following set of comparisons was conducted separately for each group, as the 

interaction between group and pair type was significant, F (3, 78) = 11.52, MSE = 220, 
2
p 

= 30. In the control group, RTs of comparisons of pairs containing 1 and both 1 and 9 

were faster (436 ms) than comparisons of pairs containing 9 and neither 1 nor 9 (481 

ms), F (1, 26) = 75.26, MSE = 435, 
2

p = .74. These findings are consistent with the notion 

that in intentional numerical processing, 1 serves as the lower end of the set. 

Comparisons of the pair containing both 1 and 9 were faster (430 ms) than comparisons 

of pairs containing only 1 (442 ms), F (1, 26) = 8.17, MSE = 135, 
2

p = .24, presumably 

due to a distance effect where the pair containing both 1 and 9 is the pair with the 

largest numerical distance. RTs for comparisons of pairs containing 9 (484 ms) and for 

pairs containing neither 9 nor 1 (478 ms) were similar, F (1, 26) = 3.12, ns, indicating that 

9 does not serve as the upper end in intentional numerical processing. A similar pattern 

of results was obtained for the comparisons performed by the DD group. Comparisons 

of pairs containing 1 and both 1 and 9 were faster (518 ms) than comparisons of pairs 

containing 9 and pairs containing neither 1 nor 9 (596 ms), F (1, 26) = 167.98, MSE = 

435, 
2

p = .87. This indicates that participants with DD intentionally processed 1 as the 

lower end of the set. Comparisons of the pair containing both 1 and 9 were faster (510 

ms) than comparisons of pairs containing only 1 (525 ms), F (1, 26) = 10.40, MSE = 135, 
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
2

p = .29. RTs for comparisons of pairs containing 9 (595 ms) and of pairs containing 

neither 9 nor 1 (596 ms) were similar, F < 1, indicating that DD participants did not 

process 9 as the upper end of the set.  

Numerical distance effects were examined in each group for each pair (see Figure 4). A 

significant linear trend indicating that RTs decreased with numerical distance was found 

for comparisons of pairs containing 1, F (1, 26) = 23.44, MSE = 756.24, 
2

p = .47, and was 

similar in both the control and DD group, F < 1. The linear trend effect for comparisons 

of pairs containing 9 was found for both the DD group, F (1, 26) = 132.64, MSE = 1,289, 


2

p = .84, and the control group, F (1, 26) = 67.58, MSE = 1,289, 
2

p = .72, though it was 

more pronounced in the DD group, F (1, 26) =11.05, MSE = 1,289, 
2
p = .30. The linear 

trend for comparisons of pairs containing neither 1 nor 9 was found for both the DD 

group, F (1, 26) =127.84, MSE = 619, 
2

p = .83,] and the control group, F (1, 26) = 79.04, 

MSE = 619, 
2

p = .75, and again was more pronounced in the DD group, F (1, 26) = 7.44, 

MSE = 619, 
2

p = .22. Note that the distance was larger for comparisons to 1, replicating 

the findings of Goldman and Tzelgov (2014).  

Physical task. Mean RTs were submitted first to a 2 (group: control vs. DD) × 2 

(physical congruency: congruent vs. incongruent) × 4 (pair type: pairs containing 1; 9; 1 

and 9; and neither 1 nor 9) ANOVA. An SiCE was found as comparisons in the 

congruent size condition (469 ms) were faster than in the incongruent size condition 

(510 ms), F (1, 26) = 139.57, MSE = 656, 
2
p = .84. The effect of pair type was 

significant, F (3, 78) = 9.51, MSE = 156, 
2

p = .27, and moderated the SiCE, F (3, 78) = 

41.79, MSE =203, 
2

p = .62, indicating that the SiCE varied with pair type (see Figure 

5). 

The triple interaction of pair type, congruency and group was not significant, F < 1, 
2

p 

= .01, nor was the interaction of pair type and group, F (3, 78) = 2.256, ns, 
2

p = .08, or 

the interaction of congruency and group, F < 1, 
2

p = .006. These result patterns 

indicate that the automatic numerical processing was similar for control and DD 

participants. 

The next analyses were conducted together for the two groups: the SiCE was larger for 

comparisons of pairs containing 1 and pairs containing both 1 and 9 (465 ms in the 

congruent condition vs. 527 ms in the incongruent condition) compared with pairs 
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containing 9 and pairs containing neither 1 nor 9 (480 ms in the congruent condition vs. 

499 ms in the incongruent condition), F (1, 26) = 88.02, MSE = 275, 
2

p = .77, thus 

suggesting that 1 serves as the lower end in the set of primitives. The SiCE in pairs 

containing 9 (482 ms in the congruent condition vs. 498 ms in the incongruent 

condition) was smaller than the SiCE in pairs containing neither 1 nor 9 (477 ms in the 

congruent condition vs. 501 ms in the incongruent condition), F (1, 26) = 7.44, MSE = 64, 


2

p = .22, suggesting that 9 does not serve as the higher end of the primitives set. The 

size congruity effect for pairs containing 1 (467 ms in the congruent condition vs. 534 

ms in the incongruent condition) was similar to the size congruity effect for pairs 

containing both 1 and 9 (464 ms in the congruent condition vs. 521 ms in the 

incongruent condition), F (1, 26) = 2.8, ns. This result implies that comparisons containing 

the lower end were determined mostly by the end stimulus and were relatively 

uninfluenced by the numerical distance. 

The three types of pairs (pairs containing 1, pairs containing 9, and pairs containing 

neither 1 nor 9) were analyzed separately to test the linear trend of the interaction 

between the intra-pair distance and the size congruency effect (see Figure 6).  

For all pair types, the interaction between the intra-pair distance and the SiCE was 

similar for both groups, F < 1, therefore for each pair type, data of the two groups was 

analyzed together. In comparisons of pairs containing 9, the SiCE increased with larger 

numerical distance, F (1, 26) = 34.47, MSE = 583, 
2

p = .57. Similarly, in comparisons of 

pairs containing neither 1 nor 9, the SiCE increased with larger numerical distance, F (1, 

26) = 21.92, MSE = 180, 
2

p = .46. There was no linear moderation of numerical distance 

on the SiCE in pairs containing 1, F (1, 26) = 1.93, ns.  

To conclude, the obtained AEE (increased SiCE that is insensitive to intra-pair distance) 

for comparisons including 1 validated the claim that 1 (but not 9) serves as an end 

stimulus. Furthermore, the AEE characterized performance in DD participants and 

controls alike. 
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Experiment 3:  The SNARC Effect 

As already mentioned, the SNARC effect is another way to show access to the MNL. 

Until recently, there was no evidence of the SNARC effect in Hebrew readers but now 

Zohar-Shai et al. (2014) have shown that one method to obtain the effect in Hebrew is to 

run the two mapping conditions on different days. We applied this method in the present 

study. 

Method 

Stimuli and apparatus. The stimuli were single Arabic digits ranging from 1 to 9 (5 

excluded), presented one at a time at the center of a screen and written in Times New 

Roman font (size: 32 points) in white color on a black background. Within a single 

block, each number appeared eight times in random order, resulting in a block of 64 

randomly ordered trials. Each experimental block was preceded by 10 training trials, 

which were not analyzed. 

The experiment was conducted on an IBM-PC with stimuli presented on a 17-inch 

monitor screen from a viewing distance of approximately 50 cm. E-Prime software 

controlled the presentation of stimuli. Responses were given on a standard QWERTY 

keyboard.  

Procedure  

The task was to make a speeded parity judgment for each digit. The participant had to 

respond with the pointing finger of one hand if the digit was an even number and with 

the pointing finger of the other hand if it was an odd number. The "Q" key was used for 

the left-hand key response and the "P" key was used for right-hand key response. 

Participants were asked to respond as quickly as possible but to avoid errors. Speed and 

accuracy of each response were recorded.  

Each trial started with a fixation cross that appeared at the center of the screen for 200 

ms, followed by a blank screen for 300 ms, and then the number stimulus appeared and 

remained visible until the participant responded or 3,000 ms elapsed. After response, 

there was a 1,300 ms interval of a blank screen before the next trial started.  

The participants were told that they would see numbers between 1 and 9. They were to 

decide whether each number was odd or even by pressing one of two response keys. 

The instructions emphasized both speed and accuracy. Half of the participants were 
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instructed to respond in the first block with the right hand to odd numbers and with the 

left hand to even numbers. This mapping was reversed for the second half of the 

participants. Each participant performed the task again a week later with the opposite 

parity-to-hand mapping. 

Results and Discussion   

The trials with incorrect responses (2.68%) and RTs longer or shorter than two standard 

deviations from the mean (5.55%) were removed from further analysis. Median RTs for 

correct responses were computed for each participant, each side of response, and each 

target.  

The data was analyzed in a 2 (response side: left vs. right) x 4 (magnitude: 1.5, 3.5, 6.5, 

8.5) x 2 (parity) factorial design with three within-participant factors and group (DD vs. 

control) as a between-participants variable. 

The ANOVA revealed a significant group effect, F (1, 26) = 26.50, MSE = 173,594, 
2

p = 

.50, indicating that the responses of the control group were 204 ms faster than those of 

the DD group (498 ms vs. 702 ms, respectively). Participants responded faster (589 ms 

vs. 611 ms) with the right-hand key than with the left-hand key, F (1, 26) = 6.35, MSE = 

8,879, 
2

p = .20. The interaction between number magnitude and parity was significant, 

F (3, 78) = 6.74, MSE = 6,015, 
2

p = .20, and was also modulated by group, F (3, 78) = 4.12, 

MSE = 6,015, 
2

p = .14. This interaction indicated that as number magnitude increased, 

the responses to even numbers became faster while the responses to odd numbers 

became slower. This interaction was significant for the DD group, F (1, 26) = 16.54, MSE 

= 7,785, 
2

p = .39, but not for the control group, F (1, 26) = 1.09, MSE = 7,785, 
2

p = .04. 

Most importantly, the interaction between side of response and number magnitude was 

significant, F (3, 78) = 14.87, MSE = 2,351, 
2

p = .36, as was the linear contrast for this 

interaction, F (1, 26) = 26.07, MSE = 3,759, 
2

p = .50. The mean linear regression slope 

was -11.02. Note that in the present report, we analyzed linear effects within the 

framework of a repeated-measures ANOVA as suggested by Pinhas, Tzelgov, and 

Ganor-Stern (2012). Also note that the statistical testing of each (simple) linear trend 

interaction between side of response and number magnitude checks if the RT difference 

between the right-hand key response and the left-hand key response (dRT) significantly 

decreases as the number magnitude increases (for further discussion of testing linear 

effects in an ANOVA, see Pinhas et al., 2012). 



18 

 

This interaction was not moderated by group as can be seen by the absence of a triple 

interaction of response side x number magnitude x group, F (3, 78) = 1.73, MSE = 2,351, 


2

p = .06. There were no other significant effects. 

The interaction between response side and number magnitude was calculated separately 

for each group. For the DD group, interaction between the side of response and number 

magnitude was significant, F (3, 36) = 8.21, MSE = 3,498, 
2

p = .40, as was the linear 

contrast for this interaction, F (1, 13) = 13.13, MSE = 6,323, 
2

p = .52. The mean linear 

regression slope was -14.84 (see Figure 7).  

For the control group, the interaction between the side of response and number 

magnitude was significant, F (3, 42) = 6.48, MSE = 1,368, 
2

p = .32, as was the linear 

contrast for this interaction, F (1, 14) = 14.39, MSE = 1,562, 
2

p = .50. The mean linear 

regression slope was -7.19 (see Figure 8).  
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Conclusions and Implications 

In this study we investigated the internal representation of single-digit natural numbers 

by young adults with developmental dyscalculia and healthy controls. The participants 

in the DD group were characterized by minimal comorbidity; none of the 13 of them 

was diagnosed with ADHD, two were diagnosed with mild dyslexia and five with mild 

dysgraphia. We assumed that we tapped into the semantic representation minimally 

affected by intentional strategies because we evaluated automatic processing of 

numerical magnitude under conditions in which such processing was not part of the task 

requirements.  

We employed two markers of automatic processing of numerical information; the 

SNARC effect that allows testing whether numbers are represented along a mental 

number line, and the SiCE that allows testing different features of such a representation. 

To estimate the SNARC effect, participants performed a parity decision, while to 

estimate the SICE, they performed physical size comparisons of the numerals presented. 

The effects reported characterized both groups alike (no effect of interest was 

moderated by group membership) and were significant and of impressive magnitude in 

each group:  

 There was a SNARC effect indicated by a negative correlation between the 

difference between the two hands in the parity task and the number magnitude. 

Such a finding supports the hypothesis that the MNL spreads from left to right. 

 The SiCE increased with the intra-pair numerical distance, consistent with the 

notion that numbers are arranged along the MNL according to increasing numerical 

magnitude. 

 The SiCE decreased with the average (numerical) magnitude of the numbers 

compared, consistent with the hypothesis of a compressed representation. 

 The emergence of the arrangement of numbers along the MNL is apparently 

contributed to not just by a comparison process but also by the mapping of 1 as an 

end stimulus (the smallest number). 

What is particularly important is the commonality of these finding in the two groups. 

The only difference between the two groups we can point to in regard to numerical 

processing is the processing speed of numerical information—the members of the 
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control group were much faster. However, participants with DD did not differ from the 

controls in their mental representation of numbers. Both groups showed similar SNARC 

and SiCE effects. In each of the groups, the SiCE was moderated to the same extent by 

the same factors—the intra-pair distance and the (average) magnitude of the numbers 

presented. Furthermore, in both groups the number 1 showed an automatic end effect 

(for a detailed discussion of the end effect see (Pinhas & Tzelgov, 2012)). Thus we may 

conclude that as far as the mental representation of the natural numbers 1-9 is of 

interest, young adults with DD did not differ from controls. 

When interpreting these results one should keep in mind that the DD group in our study 

was characterized by minimal comorbidity. Rubinsten and Henik (2009) made the 

distinction between developmental dyscalculia (DD) as a deficit in core numerical 

abilities and the more general concept of mathematical learning disabilities (MLD). 

According to their analysis, the defining features of DD are a deficit in the IPS and 

minimal comorbidity. Given the minimal comorbidity of our participants, one 

possibility is that they belong to this category. Assuming this to be true, the present 

study allows concluding that at least for our young adults with DD, the impairment is 

not caused by deficiencies in the mental representation of single-digit natural numbers, 

which are the building blocks of the symbolic representation of quantities (Tzelgov et 

al., in press). Yet, it may be that the deficient performance of the DD participants in our 

study reflects a deficiency in non-symbolic numerical representation. That is, the fact 

that no differences were found in the current study between performance of DD 

participants and controls when  using symbolic numbers as stimuli, may suggest that the 

symbolic mental number line is not deficient in those with DD but rather their 

processing of non-symbolic stimuli is. Specifically, numerical representations are 

thought to rest on two distinct representation systems; symbolic (as has been 

investigated in the current study) and non-symbolic. The non-symbolic representation 

(e.g., group of dots; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Gallistel & Gelman, 

2005) develops without formal teaching and is commonly attributed to an analog, 

approximate system.  

While most of the studies favor a strong overlap between symbolic and non-symbolic 

number representation systems in adults (e.g., Furman & Rubinsten, 2012; Nieder & 

Dehaene, 2009; Piazza, et al., 2010; Santens, Roggeman, Fias, & Verguts, 2010), 

recently Lyons, Ansari, and Beilock, (2012) argued that in adults, a digit and its 
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corresponding quantity (e.g., array of seven dots and the digit '7') are not related (see 

also Sasanguie, Defever, Maertens, & Reynvoet, 2014). Hence, it could be that 

supporting the current finding, the symbolic mental number line is not deficient in those 

with DD but rather the non-symbolic representation is. Indeed, even when using a 

symbolic comparison task (as was done in the current study), deficits in basic magnitude 

representation or quantity processing may appear. For example, Soltész and colleagues 

(Soltész, Szűcs, Dékány, Márkus, & Csépe, 2007) found that adolescents with DD show 

no late event-related brain potentials (ERPs) distance effect between 400 ms and 440 ms 

on right parietal electrodes when comparing Arabic numerals. Such a finding may 

indicate that the processing of the magnitudes of numerical information is abnormal in 

those with DD. Accordingly, to a certain degree, our finding then, supports previous 

ones. 

Current findings show no differences between DD participants and controls in 

numerical symbolic representations and hence, suggest a deficit in the non-symbolic 

numerical system, which is separately represented. The question then is, how we found 

initial differences in our symbolic assessment tasks included in MATAL that 

differentiated between the DD and control groups. To answer this question it is 

important to note that many studies have demonstrated a positive correlation between 

non-symbolic numerical representations and symbolic mathematical proficiency (e.g., 

Bonny & Lourenco, 2013; Halberda, Mazzocco, & Feigenon, 2008; Inglis, Attridge, 

Batchelor, & Gilmore, 2011; Libertus, Feigenson, & Halberda, 2013). For example, 

previous studies have shown that more skillful estimators tend to have better conceptual 

understanding of mathematics (LeFevre, Greenham, & Naheed, 1993), better counting 

and arithmetic skills (LeFevre et al., 1993) and higher math achievement test scores 

(Siegler & Booth, 2004). The non-symbolic numerical system has been shown to be 

correlated with processing mathematical information in adults (Lourenco, Bonny, 

Fernandez, & Rao, 2012). In addition, participants who suffer from DD were found to 

have a lower acuity of non-symbolic representation that was similar to the acuity of 

children who were five years younger (Piazza et al., 2010). Alongside correlation 

studies, longitudinal studies have shown that non-symbolic numerical estimation skill 

during kindergarten is correlated with a better (symbolic) mathematics ability six 

months later (Libertus et al., 2013). It should be emphasized however, that our 
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hypothesis that non-symbolic numerical representation and not symbolic representation 

is deficient in cases of DD, requires further research. 
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Table 1 - Characteristics of the Clinical and Control Samples 

Sample N Gender Age (yrs.) 

  Male Female Range Mean SD 

Clinical  13 4 9 22-28 24.6 2.17 

Control  16 13 3 23-28 25.5 1.63 

 

 

 

 

Figure 1 - Mean RTs in Experiment 1 as a function of congruency,  

numerical distance and group 
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Figure 2 - Mean RTs in Experiment 2 as a function of congruency, size and 

group 

 

 

 

 

 

Figure 3 - RTs for the numerical comparison task in Experiment 2  

as a function of group and pair type. 
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Figure 4 - RTs for the numerical comparison task in Experiment 2  

by group, pair type and numerical distance. 

 

 

 

Figure 5 - RTs for the physical comparison task in Experiment 2  

as a function of group, congruency and pair type. 
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Figure 6 - RTs for the physical comparison task in Experiment 3  

as a function of group, congruency, pair type and numerical distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 -  The SNARC effect in the DD group 
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Figure 8 - The SNARC effect in the control group 

 


